On <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si3.svg"><mml:msup><mml:mrow><mml:mi>L</mml:mi></mml:mrow><mml:mrow><mml:mi>p</mml:mi></mml:mrow></mml:msup></mml:math>-strong convergence of an averaging principle for non-Lipschitz slow-fast systems with Lévy noise

نویسندگان

چکیده

We study Lp-strong convergence for coupled stochastic differential equations (SDEs) driven by Lévy noise with non-Lipschitz coefficients. Utilizing Khasminkii’s time discretization technique, the Kunita’s first inequality and Bihari’s inequality, we show that slow solution processes converge strongly in Lp to of corresponding averaged equation.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Double averaging principle for periodically forced slow-fast stochastic systems

This paper is devoted to obtaining an averaging principle for systems of slow-fast stochastic differential equations, where the fast variable drift is periodically modulated on a fast time-scale. The approach developed here combines probabilistic methods with a recent analytical result on long-time behavior for second order elliptic equations with time-periodic coefficients.

متن کامل

Lp (p≥ 2)-strong convergence in averaging principle for multivalued stochastic differential equation with non-Lipschitz coefficients

*Correspondence: [email protected] School of Mathematics and Statistics, South-Central University for Nationalities, Wuhan, 430074, China Abstract We investigate the averaging principle for multivalued stochastic differential equations (MSDEs) driven by a random process under non-Lipschitz conditions. We consider the convergence of solutions in Lp (p≥ 2) and in probability between the MSD...

متن کامل

An Explicit Euler Scheme with Strong Rate of Convergence for Financial SDEs with Non-Lipschitz Coefficients

We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit EulerMaruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity and integrability conditions, we obtain the optimal strong error rate. We apply this scheme to SDEs widely used in the mathem...

متن کامل

An explicit Euler scheme with strong rate of convergence for non-Lipschitz SDEs

We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit EulerMaruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity conditions, we obtain the optimal strong error rate. We consider SDEs popular in the mathematical finance literature, includi...

متن کامل

Strong convergence rate of principle of averaging for jump-diffusion processes

Abstract We study jump-diffusion processes with two well-separated time scales. It is proved that the rate of strong convergence to the averaged effective dynamics is of order O(ε1/2), where ε 1 is the parameter measuring the disparity of the time scales in the system. The convergence rate is shown to be optimal through examples. The result sheds light on the designing of efficient numerical me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics Letters

سال: 2021

ISSN: ['1873-5452', '0893-9659']

DOI: https://doi.org/10.1016/j.aml.2020.106973